Crack identification by 3D time-domain elastic or acoustic topological sensitivity
نویسندگان
چکیده
The topological sensitivity analysis, based on the asymptotic behaviour of a cost functional associated with the creation of a small trial flaw in a defect-free solid, provides a computationally-fast, non-iterative approach for identifying flaws embedded in solids. This concept is here considered for crack identification using time-dependent measurements on the external boundary. The topological derivative of a cost function under the nucleation of a crack of infinitesimal size is established, in the framework of time-domain elasticity or acoustics. The simplicity and efficiency of the proposed formulation is enhanced by the recourse to an adjoint solution. Numerical results obtained on a 3-D elastodynamic example using the conventional FEM demonstrate the usefulness of the topological derivative as a crack indicator function. To cite this article: C. Bellis, M. Bonnet, C. R. Mecanique 337 (2009). Résumé Identification de fissures par sensibilité topologique dynamique en élasticité ou acoustique tridimensionnelle. L’analyse de sensibilité topologique, reposant sur le comportement asymptotique d’une fonction coût associée à la création d’un défaut virtuel infinitésimal dans un solide sain, fournit une méthode de calcul rapide et non itératif de construction d’une fonction indicatrice de défauts. Dans cette Note, consacrée à l’identification de fissures, le gradient topologique d’une fonctionnelle coût quelconque par rapport à l’apparition d’une fissure de taille infinitésimale est établi pour l’élastodynamique lineaire et l’acoustique. Les développements présentés reposent sur l’utilisation d’un état adjoint pour plus de simplicité et d’efficacité. Un exemple numérique en élastodynamique tridimensionnelle, basé sur une méthode d’éléments finis standard, valide l’intérêt de l’approche proposée. Pour citer cet article : C. Bellis, M. Bonnet, C. R. Mecanique 337 (2009).
منابع مشابه
Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain
Building on previous work for 3D inverse scattering in the frequency domain, this article develops the concept of topological derivative for 3D elastic and acousticwave imaging of media of arbitrary geometry using data in the time domain. The topological derivative, which quantifies the sensitivity of the cost functional associated with the inverse scattering problem due to the creation at a sp...
متن کاملA FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data
A time-domain topological sensitivity (TS) approach is developed for elastic-wave imaging of media of arbitrary geometry. The TS, which quantifies the sensitivity of the misfit cost functional to the creation at a specified location of an infinitesimal hole, is expressed in terms of the time convolution of the free field and a supplementary adjoint field as a function of that specified location...
متن کاملTopological sensitivity and FMM-accelerated BEM applied to 3D acoustic inverse scattering
This study is set in the framework of inverse scattering of scalar (e.g. acoustic) waves. A qualitative probing technique based on the distribution of topological sensitivity of the cost functional associated with the inverse problem with respect to the nucleation of an infinitesimally-small hard obstacle is formulated. The sensitivity distribution is expressed as a bilinear formula involving t...
متن کاملDamage evolution in brittle materials by shape and topological sensitivity analysis
This paper is devoted to a numerical implementation of the FrancfortMarigo model of damage evolution in brittle materials. This quasi-static model is based, at each time step, on the minimization of a total energy which is the sum of an elastic energy and a Griffith energy release rate. Such a minimization is carried over all geometric mixtures of the two, healthy and damaged, elastic phases, r...
متن کاملX-FEM for Abaqus (XFA) Toolkit for Automated Crack Onset and Growth Simulation: New Development, Validation, and Demonstration
A software tool for automated crack onset and growth simulation based on the eXtended Finite Element Method (X-FEM) is developed. This XFA tool for the first time is able to simulate arbitrary crack growth or composite delamination without remeshing. The automated tool is integrated with Abaqus/Standard and Abaqus/CAE via the customization interfaces. It seamlessly works with the Commercial, Of...
متن کامل